MID-SEMESTER EXAMINATION M. MATH I YEAR, II SEMESTER 2015-2016 COMPLEX ANALYSIS

Max. Score:100

Time limit: 3hrs.

1. Find all positive integers n such that the map $z \to z^n$ maps the upper half plane into itself. [10]

2. Let
$$f(z) = \exp(\exp(\exp(z)))$$
. Show that $|f(z)| \le e^e$ if $|z| \le 1$. [10]

3. Find the largest open set on which $\int_{0}^{\infty} \frac{e^{tz}}{1+t^2} dt$ is defined and analytic. [15]

4. Find the nature of singularity of $e^{\frac{1}{\sin z}}$ at 0. Justify your answer. [10]

5.

a) Let n be a positive integer > 1. Give an example of a holomorphic function on $\mathbb{C}\setminus\{0\}$ which has a holomorphic m - th root for m = n - 1 but not for m = n. [20]

b) Let f be a holomorphic in $\mathbb{C}\setminus\{0\}$ and $f^n(z) = z^m$ for all z where m and n are positive integers. Show that n divides m. [10]

6. Show that there is no holomorphic function f on the open unit disc U such that $|f(z)| \to \infty$ as $|z| \to 1$. [10]

7. Let f be a conformal equivalence of the open unit disc U onto itself. If f has more than one fixed point show that f(z) = z for all $z \in U$. [15]

Hint: apply Schwartz Lemma to $\phi_1 \circ f \circ \phi_2$ for suitable ϕ_1 and ϕ_2 .